

# Lab#5: Energy Losses in Pipes

# **CE 336**

# **Department of CECEM**

# Group Report

| Group Members   | Major                  |
|-----------------|------------------------|
| Nima Razavi     | Mechanical Engineering |
| Isaac Nunez     | Mechanical Engineering |
| Nick Shido      | Civil Engineering      |
| Dane Melfi      | Mechanical Engineering |
| Ricardo Jimenez | Mechanical Engineering |
| Eduardo Aguallo | Mechanical Engineering |
| Jose Torres     | Civil Engineering      |

September 20, 2022 Fall 2022

#### **Purpose of Study**

The purpose of this experiment is to demonstrate the concept of major losses when fluids flow through pipes. The experiment will show how different pipes that vary in size and roughness can affect energy loss in pipes. Smooth and rough pipes will be used to understand how the texture can affect frictional loss in pipes.

#### **Introduction**

Throughout this experiment were plentiful observations of a fluid, in this case water, flowing through differing smoothness and diameters or piping at incremental flow rates. Theoretically, the fluid was uniform throughout the experiment and the all of the equipment for measuring remained the same as well as the temperature, so the main contributing factors that were dictating the major losses through pipes would be the cross-sectional area of the pipes, smoothness of the pipes, and the flow rate at each given measurement interval. In practicality, the roughness of the pipe is calculated through numerical analysis to estimate the roughness factor ( $\epsilon$ /D). Also all of the collected results for volume, time elapsed, and measured head loss is used to determine flow rate (Q), flow velocity (V), the respective Reynold's numbers (Re), friction factor (f), friction loss, and category of flow.

#### **Theory**

Osborne Reynolds showed two types of flow that can form in a pipe; Laminar and Turbulent flow. He created a unit less number known as Reynolds Number (Re). Reynolds Number is defined as:

$$\operatorname{Re} = \frac{VD}{v} = \frac{\rho VD}{\mu} (1)$$

V is the flow velocity through the pipe, D is the diameter of the pipe, v is the kinematic viscosity of the fluid,  $\mu$  is the dynamic viscosity of the fluid, and  $\rho$  if the density of the fluid. Re < 3000,

flow is laminar. Re > 5000 is turbulent. For Re 3000 < Re < 5000 flow is transitional and flow characteristics are not accurately defined.

Henry Dacry and Julius Weisbach formed a relationship to measure the head loss in pipes. The Darcy-Weisbach frictional head loss equation is defined as:

$$h = f \frac{L}{D} \frac{V^2}{2g} (2)$$

Where g is gravity constant and f if the Darcy-Weisbach friction factor. For a flow that is laminar, the friction factor varies linearly with Reynolds Number as follows:

$$f = \frac{64}{Re} (3)$$

For a flow that is turbulent, friction factor is dependent on Re and the relative roughness of the pipe material ( $\epsilon/D$ ). Lewis Moody created a graph that can be used to find friction factor f for laminar and turbulent flow. This chart is known as the Moody Chart.



Figure 1. Moody Chart

The chart shows four zones of flow in a pipe:

- Flow that is laminar where the friction factor is linearly decreasing with an increase in Reynolds Number
- Transitional zone where characteristics of the flow cannot be defined as turbulent or laminar
- Transitional turbulent zone where friction factor depends on Re and the relative roughness of the pipe material
- 4. Turbulent zone where friction factor is independent of Re and varies only with the relative roughness of the pipe material

Friction factor can also be calculated using the Swamee-Jain equation as follows:

$$f = \frac{0.25}{\left[log(\frac{\frac{e}{D}}{3.7} + \frac{5.74}{Re^{0.9}})\right]^2}$$
(4)

### **Equipment**

The equipment utilized for this experiment were 4 smooth pipes with varying diameter, along with one rough pipe with diameter equal to the 4th pipe. Probes were also used as attachments to the pipes in order to determine head losses, along with a water nanometer to find pressure drop. A hydraulic bench was also used.



Figure 2. C6-MKII-10 Armfield apparatus



Figure 3. Roughened Pipe

#### **Experimental Set-Up and Procedures**

The experiment has two exercises.

#### **Exercise 1: Flow through smooth pipes**

First, the valve of the hydraulic bench was shut off completely, and the hydraulic bench pump was turned. Next, the valve of the 5mm diameter pipe was opened to establish flow through the pipe. Then the valve in the hydraulic bench was slowly opened to have a very low flow. We used the cylinder and stopwatch to record the time it takes to fill the cylinder to a certain volume, which is our first flow rate data. In order to find the pressure drop or head loss through the pipe when flow is low, we used a water manometer. We connected the water manometer with the two tapings in the pipe using tubing and connectors. And then recorded the pressure drop in the pipe. Next, we increased the flow rate in the hydraulic bench and recorded the flow rate by recording the time required to collect a certain volume of water as done previously. Again, we used a cylinder to collect the volume of water for low flows, and recorded the pressure drop for this new flow rate. These steps were then repeated to collect a total of 10 readings for different flow rates starting with very low flow to high flow. For high flow, we used a pressure measurement device to record pressure drop in the pipe by connecting the two tapings in the pipe using tubing and connectors, and recorded the pressure drop in the pipe.

We then closed the valve of the 5mm diameter pipe, and opened the 8mm diameter pipe. We took 10 readings of different flow rate through the pipe and corresponding pressure drop using cylinder, stopwatch and pressure meter. We repeated the same procedure for the 11mm and 17mm diameter pipe and took 10 readings of flow rate and pressure drop for each pipe. Finally, using a Vernier scale, we recorded the internal diameter of the test pipe samples.

#### **Exercise 2: Flow through roughened pipe**

We repeated the same procedure for the roughened pipe for 10 readings of different flow rates by altering the flow using the control valve on the hydraulic bench. We used a water manometer to measure pressure drop in the pipe. Using the Vernier scale, we estimated the nominal internal diameter of the test pipe sample and the roughness factor.

### **Discussion**

| Table 1. | Smooth | Pipe | D=5mm |
|----------|--------|------|-------|
|----------|--------|------|-------|

|          |            |              |           |           |            | Calculated | Measured  |
|----------|------------|--------------|-----------|-----------|------------|------------|-----------|
|          |            |              |           | Reynold's | Calculated | Head Loss  | Head Loss |
| Volume V |            | Flow Rate    | Velocity  | Number    | Friction   | hc (m      | hm        |
| (L)      | Time t (s) | $Q(m^{3}/s)$ | (m/s)     | Re        | Factor f   | $H_2O)$    | $(mH_2O)$ |
|          |            | 0.0000059    | 0.3031522 | 1353.3583 | 0.0472897  | 0.0443016  |           |
| 0.06     | 10.08      | 52380952     | 726       | 6         | 659        | 4097       | 0.033     |
|          |            | 0.0000112    | 0.5720718 | 2553.8921 | 0.0250597  | 0.0836006  |           |
| 0.113    | 10.06      | 3260437      | 432       | 57        | 8956       | 3143       | 0.164     |
|          |            | 0.0000133    | 0.6807419 | 3039.0264 | 0.0210593  | 0.0994813  |           |
| 0.135    | 10.1       | 6633663      | 348       | 95        | 7547       | 0864       | 0.226     |
|          |            | 0.0000152    | 0.7754504 | 3461.8321 | 0.0184873  | 0.1133216  |           |
| 0.155    | 10.18      | 259332       | 103       | 89        | 2015       | 828        | 0.288     |
|          |            | 0.0000182    | 0.9319458 | 4160.4725 | 0.0153828  | 0.1361913  |           |
| 0.185    | 10.11      | 9871414      | 587       | 83        | 6786       | 948        | 0.394     |
|          |            | 0.0000203    | 1.0347437 | 4619.3916 | 0.0138546  | 0.1512139  |           |
| 0.205    | 10.09      | 1714569      | 33        | 66        | 3815       | 262        | 0.493     |
|          |            | 0.0000237    | 1.2114072 | 5408.0682 | 0.0118341  | 0.1770309  |           |
| 0.24     | 10.09      | 8592666      | 97        | 91        | 7009       | 38         | 0.606     |
|          |            | 0.0000249    | 1.2681668 | 5661.4592 | 0.0113045  | 0.1853255  |           |
| 0.25     | 10.04      | 0039841      | 77        | 73        | 0594       | 897        | 0.705     |
|          |            | 0.0000249    | 1.2719573 | 5678.3809 | 0.0112708  | 0.1858795  |           |
| 0.248    | 9.93       | 7482377      | 3         | 36        | 1834       | 135        | 0.748     |
| 0.225    | 9.99       | 0.0000225    | 1.1470626 | 5120.8154 | 0.0124980  | 0.1676278  | 0.566     |

Area =  $2 \times 10^{-5} \text{ m}^2$ 

|  | 2252252 53 | 15 | 0956 | 307 |  |
|--|------------|----|------|-----|--|
|--|------------|----|------|-----|--|

### Table 2. Smooth Pipe D=8mm

Area =  $5 \times 10^{-5} \text{ m}^2$ 

| Valuma V |            | Elow Data             | Valaaitu         | Reynold's       | Calculated         | Calculated<br>Head Loss | Measured<br>Head Loss |
|----------|------------|-----------------------|------------------|-----------------|--------------------|-------------------------|-----------------------|
| (L)      | Time t (s) | $Q (m^3/s)$           | (m/s)            | Re              | Factor f           | $H_2O$                  | $(mH_2O)$             |
| 0.085    | 9.9        | 0.0000085<br>85858586 | 0.1708102<br>293 | 1220.0730<br>67 | 0.0524558<br>7478  | 0.0097506<br>34906      | 0.011                 |
| 0.09     | 9.97       | 0.0000090<br>27081244 | 0.1795880<br>752 | 1282.7719<br>66 | 0.0498919<br>5407  | 0.0102517<br>1479       | 0.008                 |
| 0.24     | 10.08      | 0.0000238<br>0952381  | 0.4736754<br>259 | 3383.3958<br>99 | 0.0189159<br>0636  | 0.0270395<br>7579       | 0.06                  |
| 0.37     | 9.93       | 0.0000372<br>6082578  | 0.7412805<br>758 | 5294.8612<br>56 | 0.0120871<br>9113  | 0.0423157<br>1075       | 0.16                  |
| 0.495    | 10.11      | 0.0000489<br>6142433  | 0.9740565<br>879 | 6957.5470<br>57 | 0.0091986<br>44218 | 0.0556036<br>3805       | 0.315                 |
| 0.365    | 4.91       | 0.0000743<br>3808554  | 1.4789092<br>22  | 10563.637<br>3  | 0.0060585<br>19258 | 0.0844229<br>5251       | 0.555                 |
| 0.41     | 4.97       | 0.0000824<br>9496982  | 1.6411852<br>78  | 11722.751<br>99 | 0.0054594<br>68908 | 0.0936864<br>1752       | 0.759                 |
| 0.38     | 4.17       | 0.0000911<br>2709832  | 1.8129160<br>18  | 12949.400<br>13 | 0.0049423<br>13879 | 0.1034895<br>994        | 0.895                 |
| 0.4      | 4.22       | 0.0000947<br>8672986  | 1.8857220<br>75  | 13469.443<br>39 | 0.0047514<br>95526 | 0.1076457<br>046        | 0.994                 |
| 0.35     | 3.57       | 0.0000980<br>3921569  | 1.9504282<br>24  | 13931.630<br>17 | 0.0045938<br>62973 | 0.1113394<br>297        | 0.923                 |

Table 2. Smooth Pipe D=11mm

Area =  $9.5 \times 10^{-5} \text{ m}^2$ 

|          |            |                |           | D         | C-11-4-1             | Calculated        | Measured       |
|----------|------------|----------------|-----------|-----------|----------------------|-------------------|----------------|
| Volumo V |            | Flow Poto      | Valoaitu  | Number    | Eriction             | head Loss         | head Loss      |
| (I)      | Time t (a) | $\int (m^3/c)$ | (m/s)     | Po        | Fliction<br>Easter f |                   | $(m \amalg O)$ |
| (L)      | Time t (s) | Q (III /S)     | (111/5)   | Ke        | Factor I             | П <sub>2</sub> О) | (IIIII_2O)     |
|          |            | 0.0000013      | 0.0143067 | 140.51307 | 0.4554736            | 0.0004319         |                |
| 0.06     | 44.13      | 59619307       | 8568      | 36        | 321                  | 720968            | 0.001          |
|          |            | 0.0000030      | 0.0317265 | 311.60009 | 0.2053914            | 0.0009579         |                |
| 0.06     | 19.9       | 15075377       | 5537      | 74        | 634                  | 361122            | 0.002          |
|          |            | 0.0000095      | 0 1002658 | 98/ 75/23 | 0.06/0008            | 0.0030273         |                |
| 0.005    | 0.07       | 28585757       | 850       | 63        | 3/01                 | 70171             | 0.003          |
| 0.095    | 9.97       | 20303737       | 0.39      | 03        | 5491                 | /91/1             | 0.003          |
|          |            | 0.0000129      | 0.1366576 | 1342.1735 | 0.0476838            | 0.0041261         |                |
| 0.13     | 10.01      | 8701299        | 736       | 8         | 4728                 | 75029             | 0.01           |
|          |            | 0.0000144      | 0.1524258 | 1497.0397 | 0.0427510            | 0.0046022         |                |
| 0.145    | 10.01      | 8551449        | 667       | 62        | 3549                 | 72148             | 0.011          |
|          |            | 0.0000200      | 0 2110860 | 2073 1668 | 0.0308706            | 0.0063734         |                |
| 0.2      | 0.07       | 6018054        | 755       | 13        | 1658                 | 20834             | 0.017          |
| 0.2      | ).)        | 0010034        | 155       | 15        | 4058                 | 27034             | 0.017          |
|          |            | 0.0000229      | 0.2412968 | 2369.8797 | 0.0270055            | 0.0072855         |                |
| 0.23     | 10.03      | 3120638        | 494       | 71        | 894                  | 99179             | 0.011          |
|          |            | 0.0000289      | 0.3046299 | 2991.9011 | 0.0213910            | 0.0091978         |                |
| 0.295    | 10.19      | 4995093        | 367       | 64        | 8095                 | 47476             | 0.017          |
|          |            | 0.0000225      | 0 2521784 | 2468 7171 | 0.0184506            | 0.0106636         |                |
| 0.24     | 10.12      | 6267776        | 602       | 00./1/1   | 254                  | 0.0100050         | 0.021          |
| 0.34     | 10.15      | 0307220        | 093       | 09        | 234                  | 9013              | 0.021          |
|          |            | 0.0000384      | 0.4043077 | 3970.8795 | 0.0161173            | 0.0122074         |                |
| 0.38     | 9.89       | 2264914        | 38        | 7         | 3594                 | 7031              | 0.023          |

Table 4. Smooth Pipe D=17mm

| Area $= 2$ | 22.7× | 10-5 | $m^2$ |
|------------|-------|------|-------|
|------------|-------|------|-------|

|          |            |                       |           |           |            | Calculated        | Measured  |
|----------|------------|-----------------------|-----------|-----------|------------|-------------------|-----------|
|          |            |                       |           | Reynold's | Calculated | Head Loss         | Head Loss |
| Volume V |            | Flow Rate             | Velocity  | Number    | Friction   | hc (m             | hm        |
| (L)      | Time t (s) | Q (m <sup>3</sup> /s) | (m/s)     | Re        | Factor f   | H <sub>2</sub> O) | $(mH_2O)$ |
| 0.195    | 10.05      | 0.0000194             | 0.0854832 | 1297.5130 | 0.0493251  | 0.0010806         | 0.001     |

|       |       | 0298507   | 1067      | 19        | 3128      | 42332     |       |
|-------|-------|-----------|-----------|-----------|-----------|-----------|-------|
|       |       | 0.0000195 | 0.0861691 | 1307.9243 | 0.0489324 | 0.0010893 |       |
| 0.195 | 9.97  | 5867603   | 3412      | 57        | 9342      | 13485     | 0.001 |
|       |       | 0.0000197 | 0.0868969 | 1318.9709 | 0.0485226 | 0.0010985 |       |
| 0.2   | 10.14 | 2386588   | 0661      | 04        | 7765      | 13674     | 0.001 |
|       |       | 0.0000273 | 0.1207033 | 1832.1047 | 0.0349324 | 0.0015258 |       |
| 0.28  | 10.22 | 9726027   | 744       | 9         | 9969      | 80638     | 0.001 |
|       |       | 0.0000354 | 0.1560714 | 2368.9411 | 0.0270162 | 0.0019729 |       |
| 0.35  | 9.88  | 2510121   | 178       | 63        | 8939      | 88376     | 0.001 |
|       |       | 0.0000407 | 0.1797339 | 2728.1042 | 0.0234595 | 0.0022721 |       |
| 0.41  | 10.05 | 960199    | 301       | 96        | 1366      | 19776     | 0     |
|       |       | 0.0000404 | 0.1780069 | 2701.8919 | 0.0236871 | 0.0022502 |       |
| 0.4   | 9.9   | 040404    | 966       | 12        | 0595      | 88618     | 0     |
|       |       |           | 0.1784297 | 2708.3089 | 0.0236309 | 0.0022556 |       |
| 0.405 | 10    | 0.0000405 | 632       | 06        | 8237      | 33053     | 0.001 |
|       |       | 0.0000365 | 0.1609680 | 2443.2648 | 0.0261944 | 0.0020348 |       |
| 0.365 | 9.99  | 3653654   | 386       | 71        | 5839      | 89369     | 0.001 |
|       |       | 0.0000522 | 0.2300150 | 3491.3000 | 0.0183312 | 0.0029077 |       |
| 0.39  | 7.47  | 0883534   | 648       | 91        | 8013      | 52461     | 0.002 |

Table 5. Roughened Pipe D=17mm

Area =  $22.7 \times 10^{-5} \text{ m}^2$ 

|          |            |                       |           |           |            | Calculated | Measured  |
|----------|------------|-----------------------|-----------|-----------|------------|------------|-----------|
|          |            |                       |           | Reynold's | Calculated | Head Loss  | Head Loss |
| Volume V |            | Flow Rate             | Velocity  | Number    | Friction   | hc (m      | hm        |
| (L)      | Time t (s) | Q (m <sup>3</sup> /s) | (m/s)     | Re        | Factor f   | $H_2O)$    | $(mH_2O)$ |
|          |            | 0.0000371             | 0.1635004 | 2481.7026 | 0.0257887  | -0.054433  |           |
| 0.37     | 9.97       | 11334                 | 083       | 27        | 4653       | 90564      | 0.042     |
|          |            | 0.0000406             | 0.1789105 |           | 0.0235674  | -0.053611  |           |
| 0.32     | 7.88       | 0913706               | 854       | 2715.6071 | 741        | 98184      | 0.038     |
|          |            | 0.0000376             | 0.1658762 | 2517.7644 | 0.0254193  | -0.054300  |           |
| 0.375    | 9.96       | 5060241               | 487       | 89        | 7512       | 56804      | 0.031     |
|          |            |                       |           |           |            |            |           |

|       |       | 0.0000394 | 0.1738502 | 2638.7982 | 0.0242534 | -0.053871 |       |
|-------|-------|-----------|-----------|-----------|-----------|-----------|-------|
| 0.395 | 10.01 | 6053946   | 398       | 82        | 6432      | 09776     | 0.049 |
|       |       |           | 0.1652127 | 2507.6934 | 0.0255214 | -0.054337 |       |
| 0.27  | 7.2   | 0.0000375 | 437       | 31        | 6096      | 54671     | 0.042 |
|       |       | 0.0000428 | 0.1885990 | 2862.6637 | 0.0223567 | -0.053142 |       |
| 0.375 | 8.76  | 0821918   | 225       | 34        | 998       | 15964     | 0.041 |
|       |       | 0.0000512 | 0.2257754 | 3426.9494 | 0.0186755 | -0.051599 |       |
| 0.37  | 7.22  | 465374    | 946       | 72        | 015       | 47988     | 0.038 |
|       |       | 0.0000626 | 0.2761966 | 4192.2703 | 0.0152661 | -0.049974 |       |
| 0.41  | 6.54  | 911315    | 357       | 64        | 9098      | 16411     | 0.036 |
|       |       | 0.0000744 | 0.3281622 | 4981.0348 | 0.0128487 | -0.048663 |       |
| 0.435 | 5.84  | 8630137   | 991       | 97        | 3552      | 20741     | 0.035 |
|       |       | 0.0000771 | 0.3398205 | 5157.9901 | 0.0124079 | -0.048406 |       |
| 0.425 | 5.51  | 3248639   | 254       | 18        | 3381      | 0739      | 0.034 |

log hm vs. log V (5 mm)



Figure 4. Smooth 5mm Pipe



Figure 5.



Figure 6.



Figure 7. Smooth 11mm Pipe



Figure 8. Smooth 8mm Pipe



Figure 9.



Figure 10.



Figure 11. Smooth 17mm Pipe







Figure 13. Rough 17mm Pipe



Figure 14.

Sample Calculations 60000595236 m3/s = .00000595238 Q= 303m VQ = (303 m/s)(.005m) RE 353  $\frac{bY}{BS3} = 0.0473$ (.303 m/4)2 005)(2)(9,81) .0473 1.025/

The value of n when plotting log h<sub>m</sub> vs. log V for the 5mm pipe was 0.479, 8mm was
0.512, 11mm was 0.961, 17mm was 0.946, and the rough pipe was -1.06. We should have expected a n value of 2, since for turbulent flow, frictional head loss is proportional to the square of the pipe velocity.

### **Discussion**

When looking at the two head loss values, it can be determined that the calculated head loss is less than that of the measured. Also, as diameter increases, head loss will decrease when observing the data. The data was collected while trying to maintain a time measurement of 10

seconds, and see the amount of volume collected in that time using different flow rates. It is also determined that as flow rate increases, so does Reynold's number. The head loss did increase with the increasing Reynold's numbers found, and the pipe with the maximum head loss was clearly the 8mm pipe. Comparing the 17mm smooth pipe with the 17mm rough pipe it is observed that the rough experiences more head loss than the smooth due to friction.

#### **Conclusion**

The purpose of this lab is to determine the head loss and friction factor of flowing water through various pipe sizes. We observed this with turbulent and laminar flow. The head loss values were found using the Darcy-Weisbach equation. The size and roughness of the pipe is directly correlated with the flow rate of the water as seen from the data, which the larger the pipe the higher the flow rate.

### **References**

Armfield, 2013, "Fluid Friction Apparatus", Instruction Manual.

Munson, B.R., T.H. Okiishi, W. W. Huebsch, A. P. Rothmayer, 2012, "Fundamentals of Fluid Mechanics", 7th edition, John Wiley, Chapter 8.

Houghtalen, R.J., A. O. Akan, and N. H. C. Hwang, 2009, "Fundamentals of Hydraulic Engineering Systems", 4th edition, Prentice Hall, Chapter 3.